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A three-dimensional granular contact dynamics scheme is presented. The scheme is variational in struc-
ture, thus making it possible to solve the governing equations by means of mathematical programming
methods. To facilitate the modeling of natural grains using spherical geometries, a rolling resistance
model is developed. A number of static and dynamic benchmark examples are considered including
the granular column collapse problem where the agreement between simulation and previously pub-
lished experimental results is found to be very good.
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1. Introduction impulses), the formulation emphasizes a rigorous variational
The motion and interaction of discrete particles can be simu-
lated using one of two different methods. The most popular meth-
od is the discrete (or distinct) element method (DEM) pioneered by
Cundall and Strack [7]. In this method, which is often referred to as
a molecular dynamics (MDs) method, the positions of the particles
are advanced in a fully explicit manner using sufficiently small
time steps. Interaction between grains is accounted for by relating
the overlap that may occur between particles to forces via an
appropriate constitutive relation.

The second approach to the modeling of granular assemblies is
the so-called non-smooth contact dynamics (CDs) method originally
developed by Moreau and his co-workers [32–34,10]. In the most
basic version of this method, the particles are considered perfectly
rigid and the contact forces are determined as those that exactly
prevent inter-particle penetration. An implicit time discretization
is usually employed, thus allowing for larger time steps, and
implying that collisions are ‘smeared’ over a finite time interval.

Although the MD method has been much more widely applied
than the CD method, there are several examples of the application
of the latter to the simulation of granular materials [4,9,11,12,23,
30,37,39–47,50–52].

Recently, a new formulation of the CD method has been
developed [17,15]. Besides making use of displacements as
primary variables (where most other formulations make use of
ll rights reserved.
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structure. This not only ensures existence and uniqueness of solu-
tions [48,38,2,17,15], but also paves the way for the application of
efficient mathematical programming algorithms for the solution of
the resulting problems. The present paper follows on from [17] by
firstly extending the original two-dimensional scheme to three
dimensions. Secondly, the inclusion of rolling resistance is detailed.
This feature is essential in the idealization of natural grains as
spheres. The resulting scheme is again variational in structure
and the same algorithms as used in the two-dimensional case are
applicable. In addition to these enhancements, the treatment of
boundary conditions is discussed in some detail. Finally, the capa-
bilities of the scheme are demonstrated by the solution of a num-
ber of problems with the primary aim of assessing the prospects of
modeling natural, non-spherical grains using spherical grains that
incorporate a finite amount of resistance to rolling.

2. Governing equations

2.1. Equations of motion

The equations of motion for a single spherical particle are given
by

m _vðtÞ ¼ f ext

J _xðtÞ ¼ mext
ð1Þ

where v(t) = [vx(t),vy(t),vz(t)]T are the linear velocities, x(t) =
[xx(t),xy(t),xz(t)]T are the angular velocities, m is the mass, J is
the mass moment of inertia, and fext = (fx, fy, fz)Text and mext =
(mx,my,mz)Text are external forces and moments respectively.

http://dx.doi.org/10.1016/j.compgeo.2012.08.007
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Following [17], the h-method is used to discretize the equations
of motion. Denoting the known position at t0 by x0 and the un-
known position at t0 + Dt by x, the time discrete linear momentum
equations are given by

�mDx ¼ �f 0

v ¼ 1
h

Dx
Dt
� ð1� hÞv0

� � ð2Þ

where Dx = x � x0 are the displacements and

�m ¼ 1
hDt2 m; �f 0 ¼ f ext þ �mv0Dt ð3Þ

The angular momentum balance equations are discretized in an
analogous manner to arrive at

JDa ¼ �m0

x ¼ 1
h

Da
Dt
� ð1� hÞx0

� � ð4Þ

where Da = a � a0 are the incremental rotation angles and

J ¼ 1
hDt2 J; �m0 ¼ mext þ Jx0Dt ð5Þ

The stability properties of the h-method are well known [57]:
for h ¼ 1

2 the an unconditionally stable and energy preserving
scheme is recovered, for h > 1

2 the scheme is unconditionally stable
and dissipative, and for h < 1

2 stability depends on the time step. In
the context of collisions, the algorithmic energy dissipation that
occurs for h > 1

2 can be related to the physical dissipation associ-
ated with impact and thus to the restitution coefficient. Indeed,
as shown in [17], a value of h ¼ 1

2 corresponds to an elastic collision
while h = 1 reproduces a perfectly inelastic collision.

2.2. Frictional contact

Consider the frictional contact between two spherical particles,
i and j, as shown in Fig. 1. Here and in the following, lower case
superscripts refer to the particles while upper case superscripts re-
fer to the contact. In terms of forces, the contact is defined by a set
of self-equilibrated normal and two mutually orthogonal shear
forces orthogonal to the particle normal. Let nI

0 be the outward
normal of particle i and let nI

0;a
I
0;b

I
0

n o
be an orthogonal set of unit

vectors. Incorporating contact forces, the time discrete linear
momentum equations for the two particles can be expressed as

�miDxi þ pInI
0 þ qI

aaI
0 þ qI

bbI
0 ¼ �f i

0

�mjDxj � pInI
0 � qI

aaI
0 � qI

bbI
0 ¼ �f j

0

ð6Þ
Fig. 1. Frictional interaction between two particles i and j at contact I.
where pI is the normal force at the contact and qI
a and qI

b are the
shear forces (see Fig. 1). These are all assumed positive opposite
to the associated unit vectors, nI

0, aI
0 and bI

0 respectively. Similarly,
the time discrete angular momentum equations are given by

JiDai � ri
0 � qI

aaI
0 þ qI

bbI
0

� �
¼ �mi

0

JjDaj þ rj
0 � qI

aaI
0 þ qI

bbI
0

� �
¼ �mj

0

ð7Þ

or, alternatively, by

JiDai � Ri
0 qI

aaI
0 þ qI

bbI
0

� �
¼ �mi

0

JjDaj þ Rj
0 qI

aaI
0 þ qI

bbI
0

� �
¼ �mj

0

ð8Þ

where

Ra ¼
0 �ra

z ra
y

ra
z 0 �ra

x

�ra
y ra

x 0

2
64

3
75; a ¼ i; j ð9Þ

The rotations are here assumed positive following the left-hand
rule (positive clockwise in 2D).

For general n-particle problems, it is convenient to introduce
the following system matrices and arrays:

M ¼ diagð �m1; �m1; �m1; . . . ; �mn; �mn; �mnÞ
J ¼ diagðJ1; J1; J1; . . . ; Jn; Jn; JnÞ
�f ¼ ð�f 1; . . . ; �f nÞT; �m ¼ ð �m1; . . . ; �mnÞT

g ¼ ðg1; . . . ; gNÞ

ð10Þ

together with arrays of state variables:

x ¼ ðx1; . . . ; xnÞ; a ¼ ða1; . . . ;anÞ
p ¼ ðp1; . . . ;pNÞ
qI ¼ qI

a; q
I
b

� �
; q ¼ ðq1; . . . ;qNÞ

ð11Þ

The number of particles is here given by n while N is the num-
ber of contacts. Furthermore, introducing matrices N and bN associ-
ated with the normal and shear forces, in the linear momentum
balance Eq. (6) and a matrix R involving the local cross product
matrices, Ra, of the angular momentum balance Eq. (8), the equa-
tions of motion can be written as

MDxþ N0pþ bN 0q ¼ �f 0

JDa� R0q ¼ �m0

ð12Þ

These equations are a direct extension of the equivalent two-
dimensional equations derived in [17], the only difference being
the dimensionality of q and the associated system matrices.

2.3. Variational formulation

Following [17], the governing Eq. (12) can be cast in terms of
the following optimization problem where Coulomb type friction
conditions also have been included:

minimize
x;a

maximize
p;q

1
2 DxTMDxþ 1

2 DaTJDa

þDxTðN0pþ bN 0q� �f 0Þ
þDaTð�R0q� �m0Þ
�gT

0 p
subject to kqIk � lpI

6 0; I 2 C

ð13Þ

Besides accounting for the equations of motion and the sliding
friction condition, this problem also reproduces the associated
kinematics. In summary, the full set of governing equations, which
appears as the first-order Karush–Kuhn–Tucker optimality



Fig. 3. Potential contacts as given by Delaunay triangulation.
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conditions associated with the optimization problem, comprise the
linear and angular momentum balance Eq. (12), sliding friction
conditions:

kqIk � lpI
6 0; I 2 C;

kIðkqIk � lpIÞ ¼ 0; I 2 C;
kI P 0; I 2 C;

ð14Þ

with C being the set of potential contacts, and the kinematics:

NT
0 Dxþ lk� g0 ¼ 0bNT
0 Dx� RT

0Da� Gk ¼ 0
ð15Þ

where the matrix G contains the gradients of kqIk. These conditions
are again completely analogous to those derived and discussed in
[17]. In particular, and with reference to Fig. 1, the first condition
limits the relative normal displacement as nI

0

� �TðDxi � DxjÞ 6 gI
0

while the second imposes a relation between rotations and tangen-
tial displacements. As in the two-dimensional case, the kinematics
associated with the variational formulation (13) implies a finite
amount of dilation for l > 0. However, as discussed in detail in
[17], this dilation may be viewed as an artifact of the time discret-
ization and can be reduced or eliminated entirely by reducing the
magnitude of the time step.

2.4. Alternative 3D formulation

The three-dimensional granular contact dynamics formulation
presented above is in many ways the natural extension of the
two-dimensional formulation presented in [17]. The main differ-
ence is that the directions of the shear forces are arbitrary subject
to the condition that nI

0;a
I
0;b

I
0

n o
is an orthonormal basis. In the

following, an alternative formulation that does not require such a
basis to be established a priori is briefly discussed.

The alternative formulation, sketched in Fig. 2, makes use of a
normal force directed along the particle normal as in the previous
formulation. The shear forces are accounted for by a separate force
vector qI ¼ qI

x; q
I
y; q

I
z

� �
which must satisfy

nI
0

� �T
qI ¼ 0 ð16Þ

With these forces, linear momentum balance is given by

�miDxi þ pInI
0 þ qI ¼ �f i

0

�mjDxj � pInI
0 � qI ¼ �f j

0

ð17Þ

while the angular momentum balance equations read:
Fig. 2. Alternative 3D formulation: frictional contact geometry.
JiDai � ri
0 � qI ¼ �mi

0

JjDaj þ rj
0 � qI ¼ �mj

0

ð18Þ

Both these sets of equations are somewhat simpler than those
of the previous formulation. As in the previous formulation, the
frictional sliding condition is given by

kqIk � lpI
6 0 ð19Þ

In summary, the variational formulation of the alternative 3D
formulation differs from that of (13) by the matrix bN 0 being some-
what simpler and by the additional orthogonality constraint (16).
The orthogonality constraint gives rise to an additional set of kine-
matic variables which makes the kinematics rather less transpar-
ent than that associated with the original form of (13). On the
other hand, the main quantities of interest, namely the displace-
ments, Dx and the rotations, Da, are clearly identified.

2.5. Potential contact specification

Following [17], potential contacts at t0 + Dt are defined by a
Delaunay triangulation on the basis of the positions at t0. This ap-
proach is valid in both two and three dimensions. An example of
the former is shown in Fig. 3.
3. Conic programming formulations

In both the formulations discussed in the previous section, the
sliding friction condition is in the form of a second-order cone con-
straint. Problems involving such constraints can be treated effi-
ciently by means of dedicated methods and a number of very
efficient and robust general purpose algorithms are readily avail-
able [17,1,49]. More generally, conic programming provides a nat-
ural and convenient framework for deriving and analyzing
variational formulations, for example with respect to duality prop-
erties. In the following, these features are utilized for the granular
contact dynamics problem.

3.1. Conic programming duality

Second-order cone programming often makes use of the follow-
ing primal standard form [1,5,18]:

minimize cTx
subject to Ax ¼ b

xi 2 Ki; i ¼ 1; . . . ;n

ð20Þ

where the variable vector is partitioned into n subvectors such that
x = (x1, . . . , xn) with each subvector containing elements xi = (xi,1, -
. . . , xi,m). Each subvector of variables is subject to a conic constraint
defined by the cones Ki. Of the various possible cones (please refer
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to [5] for an exact definition), the second-order cone is one of the
most common. This is given by

K : x1 P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i;2 þ � � � x2
i;m

q
; xi;1 P 0 ð21Þ

The dual to (20) is given by

maximize bTy
subject to ATy þ s ¼ c

si 2 Ki; i ¼ 1; . . . ; n

ð22Þ

The gap between the primal and dual solutions is given by

cTx� bTy ¼ ðAT þ sÞTx� ðAxÞTy ¼ sTx P 0 ð23Þ

where the last inequality follows from the definition of the second-
order cone together with the Cauchy–Schwartz inequality.

Consider now the following problem:

maximize wTr

subject to BTr ¼ f
ri 2 Kl; i ¼ 1; . . . ;n

ð24Þ

where the variable vector comprises subvectors ri = (p,q)i and the
cones are of the Coulomb type:

Kl½p;q� : lp P kqk; p P 0 ð25Þ

The dual to (24) is given by

minimize �f Tu
subject to Bu� e ¼ �w

ei 2 K�l; i ¼ 1; . . . ;n

ð26Þ

where ei = (e,c)i and the dual cones are given by (see Fig. 4):

K�l½e; c� : �
e
l

P kck; e 6 0 ð27Þ

Similar to the more conventional standard forms, the duality
gap can be shown to be �rTe P 0.

3.2. Force based problem

As shown in [17], the min–max problem (13) is equivalent to
the following maximization problem involving only static
variables.

maximize � 1
2 tTM�1t � 1

2 rTJ�1r � gT
0 p

subject to t þ N0pþ bN 0q ¼ �f 0

r � R0q ¼ �m0

ðpI;qIÞ 2 Kl; I 2 C

ð28Þ

where the new variables t and r are to be interpreted as dynamic
forces and the Coulomb criterion is expressed as a conic constraint.
Fig. 4. Primal and dual Coulomb cones.
As discussed in [17], dynamic effects may be omitted from this
problem to arrive at the following static problem:

maximize �gT
0 p

subject to N0pþ bN 0q ¼ f ext

R0q ¼ 0
ðpI;qIÞ 2 Kl; I 2 C

ð29Þ

This problem is similar in structure to those that arise in limit anal-
ysis from stress-based formulations of the extremum theorems of
plasticity [14,18,19,27,59,6].

3.3. Displacement based problem

Similarly, it is possible to derive a problem involving only kine-
matic variables, i.e. displacements and rotations. The fully dynamic
version of this problem can be constructed as follows. First con-
struct the formal dual of the static problem (29). This is given by

minimize �f T

extDx

subject to DuN ¼ NT
0Dx

DuT ¼ bNT
0 Dx� RT

0 Da

DuI
N � gI

0;DuI
T

� �
2 K�l; I 2 C

ð30Þ

Next, dynamic terms expressed in kinematic variables are
added to yield:

minimize 1
2 DxTMDx� �f T

0 Dxþ 1
2 DaTJDa� �mT

0Da

subject to DuN ¼ NT
0Dx

DuT ¼ bNT
0 Dx� RT

0 Da

DuI
N � gI

0;DuI
T

� �
2 K�l; I 2 C

ð31Þ

Again, it is worth noting that the quasi-static problem (30) is
similar in structure to common kinematic formulations of limit
analysis [35,56,3,54,55]. In analogy with the force-based yield con-
dition in (29), the relative normal and tangential displacement are
now limited by a conic constraint which effectively imposes the
flow rule.

3.4. Implementation

In [17], the force based problem (28) was chosen as the problem
actually solved by the general purpose solver SONIC [16]. However,
it appears that the kinematic equivalent (31) is somewhat more
favorable as no additional variables need to be introduced. In prac-
tice, however, the difference in solution time between the two
problems is relatively minor, but with (31) definitely being
preferable.

4. Rolling resistance

The particles that make up most natural granular materials are
far from spherical and their idealization in terms of spheres may
lead to quite erroneous results. In particular, it has long been rec-
ognized that the resistance to rolling of non-spherical particles
plays a major role in a wide range of problems, from highly dy-
namic granular flows to common quasi-static soil mechanics labo-
ratory tests [31,9,36,8,60]. While the obvious remedy to
accounting for particle shape in simulations is to use particles that
better represent the actual shape, this is usually only realized at a
significantly higher degree of complexity and computational cost.

An attractive alternative is therefore to incorporate some finite
amount of rolling resistance into the basic sphere model. This is
usually done by modifying the governing equations such that a
moment above a certain threshold is required for rolling to



Fig. 5. Rolling resistance of two-dimensional hexagonal particle.
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commence. The principle is illustrated in Fig. 5 where a hexagonal
particle with a body force f is considered. In order for rolling to
commence, i.e. in order for the angle h to increase above zero, a
moment s ¼ smax ¼ 1

2 pl is required. It is here evident that the roll-
ing resistance is generated by the eccentricity of the contact force
p. In order to map the hexagon into an equivalent disk, it is neces-
sary to establish a relation between the side length of the hexagon,
l, and the radius of the disk. This can be done in various ways, the
most obvious being to either assume equal perimeters or equal
areas. The first approach leads to l ¼ 1

3 pr ¼ 1:047 while the second
implies l = 1.010r. In addition, the moment necessary for rolling to
commence is not representative of the average moment required
during the course of a full revolution. Indeed, in the present case,
the resisting moment attains its maximum value for h = 0� and
then decreases to become equal to zero at h = 60� and remains zero
until h = 120�. This suggests an average resisting moment of
s ¼ 1

4 smax. Using the above mentioned relation between side length
and radius, we have a rolling resistance of

jsj ¼ 1
8

pl ¼ lrrp ð32Þ

where lr is referred to as the rolling friction coefficient in analogy
with the sliding friction coefficient. Assuming identical perimeters
for the hexagon and the disk, we have lr = 0.131 while assuming
identical areas gives lr = 0.137. A more refined analysis along sim-
ilar lines has recently been carried out by Estrada et al. [9] who, for
a general regular polygon with ns sides, found

lr ¼
1
2

tan
p

2ns

	 

ð33Þ

The approach taken to arrive at this expression was to match
the total work required to rotate the polygon and an equivalent
disk through a full cycle using the equal perimeter approach to de-
fine the equivalent radius. For ns = 6, this gives lr = 0.134, in good
agreement with the result of the simple analysis presented above.

4.1. Rolling resistance in 3D

In the three-dimensional case, we may proceed by using the
same decomposition of the three moment components s = (sx,sy, -
sz) as for the contact forces:

sI ¼ nI
0s

I
N þ sI

T ð34Þ

where sI
T ¼ aI

0sI
Ta þ bI

0sI
Tb. Besides the fact that three moment com-

ponents are now present, an important point that distinguishes the
two-and three-dimensional cases is that the physical origins of the
normal, or torsional, moment sN is quite different from that of the
two tangential moments, sa and sb. Indeed, while the two latter
are generated by contact force eccentricities and hence depend on
the particle shape alone, the torsional moment depends on the
geometry of the contact surface, the normal contact force, and the
sliding friction coefficient of the contact. For the simple case of a
cubic particle with side lengths l on a plane surface, the maximum
torsional moment would be jsmaxj = ll p. In the more general case,
we may relate the torsional moment to the normal force by the
inequality
jsI
N j � atlrpI

6 0 ð35Þ

where at is a shape factor that should be close to 1 for a cubic spec-
imen (depending on how side length is related to sphere radius) and
gradually decrease to zero for a perfectly spherical particle.

The tangential moments, which are generated by contact force
eccentricities can, as a direct extension of the two-dimensional
relation, be related to the normal force by

sI
T

�� ��� lrrpI
6 0 ð36Þ

This relation implicitly assumes that the particles are isotropic
in the sense that, on average, no direction of rolling is preferred
over others.

It should be noted that the above rolling resistance model only
accounts for general non-spherical particles in an average, or effec-
tive, manner. As such, for natural grains which often are quite
irregular, the value of lr must be determined by a process of cali-
bration. The two-dimensional results discussed above are here use-
ful as a means of providing an initial estimate. The extreme limits
of lr are 0 (corresponding to a disk) and 0.21 (corresponding to a
square), so for many natural materials lr = 0.1 (corresponding to
an octagon) provides a reasonable initial estimate.

4.2. Particle-to-particle contact

In the above, we have only considered the rolling resistance
encountered in the contact between a particle and a plane surface.
The case of particle-to-particle contact can be handled in the fol-
lowing way. Firstly, following the treatment of inter-particle con-
tact forces, we consider a set of self-equilibrated moments at
each contact. The angular momentum balance equations in (1)
are then extended as

r � R0q ¼ �m0 þ N0sN þ bN 0sT ð37Þ

Secondly, when enforcing the rolling resistance conditions (35)
and (36) for a contact involving particles with different radii, a
decision must be made regarding the radius, r, used in these con-
ditions. A common choice, e.g. [31], is to define the common ra-
dius as the geometric mean of the radii of the contacting
particles. However, bearing in mind that the resisting moment
essentially is generated by a contact force eccentricity, it would
seem more reasonable to take the common radius as the mini-
mum radius of the contacting particles. In this way, the resistance
generated by a plane surface (a particle of infinite radius) is the
same as that generated by the contact between two particles of
the same radius, in agreement with the premises of the analysis
in Section 4.2. Therefore, in the following, the common radius
used to define the rolling resistance generated at a contact be-
tween two particles of different radius is taken as the radius of
the smaller particle.

4.3. Force based problem

A force based problem incorporating rolling resistance may now
be constructed by substituting the augmented angular momentum
balance Eq. (37) into (28) and adding the rolling resistance condi-
tions (35) and (36). Furthermore, for the sake of brevity and since it
is of negligible effect in typical simulations, we assume that the
torsional resistance is zero. We then have
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Fig. 6. Potential boundary contact specification.
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maximize � 1
2 tTM�1t � 1

2 rTJ�1r � gT
0 p

subject to t þ N0pþ bN 0q ¼ �f 0

r � R0q ¼ �m0 þ bN 0sT

ðpI;qIÞ 2 Kl; I 2 C
rpI; sI

T

� �
2 Klr

; I 2 C

ð38Þ

The constraints here form a quarter four-sided cone in
(p,kqk,ksTk) space.

4.4. Displacement based problem

Following the procedure of Section 3, the displacement based
equivalent of the force based problem (38) is given by

minimize 1
2 DxTMDx� �f T

0Dxþ 1
2 DaTJDa� �mT

0 Da

subject to DuN ¼ NT
0Dx

DuT ¼ bNT
0Dx� RT

0 Da

DxN ¼ �NT
0Da

DxT ¼ � bNT
0Da

DuI
N � gI

0;DuI
T

� �
2 K�l; I 2 C

1
r DxI

N;DxI
T

� �
2 K�lr

; I 2 C

ð39Þ

where xN and xT are the normal and tangential rotations. Again the
constraints are coupled, this time through the global rotations a.

5. Boundary conditions

Boundary conditions may be included in the final optimization
problems (38) or (39) to account for rigid walls with or without
prescribed forces. These types of boundary conditions are covered
in the following along with a general methodology for specifying
potential boundary contacts given a collection of boundary seg-
ments (in 2D) or planes (in 3D).

5.1. Potential boundary contact specification

The basic approach to specifying boundary constraints follows
that of general particle-to-particle contact closely. Consider the
two-dimensional case and suppose that the two segments shown
in Fig. 6a constitute a rigid boundary. With the end points of each
segment given, a number of additional points are inserted between
the end points. When performing the Delaunay triangulation at the
beginning of each time step, these additional boundary points as
well as the end points are included. In this way, potential contacts
between the particles and the boundary points are established.
Next, for each particle that has a potential contact to a boundary
segment, a projection onto the segment is considered. If the
resulting point falls between the end point, the closest point has
been determined and the relevant non-penetration constraint is gi-
ven by

nTDxI
6 gb

0 ð40Þ

where gb
0 is the gap between the particle and the boundary seg-

ment, i.e. the minimum distance, and n is its normal.
On the other hand, if the projection onto the boundary segment

falls outside the segment, the closest end point is taken as the con-
tact point. This situation is shown in Fig. 6b and allows for a straight-
forward treatment of both convex and non-convex boundaries.

In three dimensions a similar procedure can be used. Consider
the case where the boundary is discretized by triangles. The parti-
cle center is first projected onto the triangle. If the resulting point
is not contained within the triangle, three separate projections are
performed with respect to each of the segments defining the trian-
gle. The resulting distances are then compared with the distances
to the triangle vertices and the point among these that minimizes
the distance is taken as the contact point. We note that significant
improvements can be made with this somewhat brute force ap-
proach, though, in practice, the identification of potential boundary
supports constitutes an insignificant part of the total computa-
tional time.

5.2. Rigid frictional boundaries

With the identification of the potential boundary contacts, the
inclusion of rigid frictional boundary constraints into the final opti-
mization is straightforward. In the force based problems (28) and
(38) new sets of boundary contact forces pb and qb are introduced
in the linear momentum balance equations which then read:

t þ N0pþ bN 0qþ Nb
0pb þ bN b

0qb ¼ �f 0 ð41Þ

where Nb
0 and bN b

0 contain the boundary unit vectors. Similarly, the
angular momentum balance is extended to include the contribution
from boundary shear forces:

r � R0q� Rb
0qb ¼ �m0 þ bN 0sT þ bN b

0s
b
T ð42Þ

where boundary moments sb
T have been introduced and Rb

0 is simi-
lar to R0 but contains only contributions from boundary particles.
Furthermore, frictional sliding and rolling resistance conditions
equivalent to those imposed for particle-to-particle contact are in-
cluded. Finally, the objective function is amended by the term
gb

0

� �T
pb, where gb

0 contains the boundary gaps.

5.3. Resultant force constraints

Often it is useful to impose constraints that limit the maximum
resultant force on a rigid boundary. Such constraints are particu-
larly relevant in common soil mechanics laboratory tests such as
biaxial or triaxial tests. Such constraints are readily included into
the forced based problems, simply by imposing a maximum mag-
nitude of the resultant contact forces. Thus, the quasi-static force
based problem (29) would be of the type:

maximize �gT
0 p� gb

0

� �T
pb

subject to N0pþ bN 0qþ Nb
0pb þ bN b

0qb ¼ f ext

R0qþ Rb
0qb ¼ 0

Apb
6 f b

ðpI;qIÞ 2 Kl; I 2 C
ðpI;qIÞb 2 Kl; I 2 Cb

ð43Þ

where fb are the limiting resultant forces. The Lagrange multipliers
associated with the additional equality constraints may be



Fig. 7. True triaxial test setup.

J. Huang et al. / Computers and Geotechnics 49 (2013) 289–298 295
interpreted as the displacements of the boundaries. Indeed, the dual
to the above problem is the displacement-based problem:

minimize �f T

extDx� f T

b Dxb

subject to DuN ¼ NT
0Dx

DuT ¼ bNT
0Dx� RT

0 Da

Dub
N ¼ Nb

0

� �T

Dx

Dub
T ¼ bN b

0

� �T

Dx� Rb
0

� �T

Da

DuI
N � gI

0;DuI
T

� �
2 K�l; I 2 C

DuI
N � gI

0;DuI
T

� �b 2 K�l; I 2 Cb

ð44Þ

where the new variables, Dxb, associated with the additional equal-
ity constraints, are the displacements of the boundaries.

6. Examples

In the following, two examples demonstrating the capabilities
of the proposed method are presented with the influence of rolling
resistance being particularly emphasized. All optimization prob-
lems generated by the granular contact dynamics formulation have
been solved using the code SONIC which has previously been
developed with continuum plasticity applications in mind [16],
though it is also well suited for the present application.

6.1. True triaxial test

The first example concerns the simulation of a true triaxial test
and makes use of the quasi-static version of the scheme. The sam-
ple, shown in Fig. 7, comprises approximately 8000 massless parti-
cles. The particle size distribution is uniform with a min/max
diameter ratio of dmin/dmax = 0.5 and an initial porosity of 0.38, cor-
Fig. 8. Comparison of granular contact dynam
responding to a relatively loose packing. The sliding friction coeffi-
cient and rolling resistance coefficient were set to zero during the
generation of the assembly which was realized by depositing par-
ticles into a rectangular box as indicated in Fig. 7. After the prepa-
ration of the sample, the particle-to-particle friction coefficient
was set to l = tan30� = 0.577 in all tests while the rolling friction
coefficient was varied between tests. The triaxial test was modeled
by confining the packing between six smooth walls. The top and
bottom boundaries were allowed to move vertically as loading
platens. With the mean stress maintained constant at

r1 þ r2 þ r3 ¼ 300 kPa ð45Þ

the specimen was subjected to radial deviatoric loading paths in
which the ratio
ics results with common failure criteria.



Fig. 9. True triaxial test: dependence of macroscopic friction angle on rolling
friction coefficient.

Fig. 10. Granular column with h0/r0 = 5.
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b ¼ r2 � r3

r1 � r3
ð46Þ

was kept constant in each test. In this way the deviatoric stress is
monotonically increased along different radial stress paths on the
p-plane of principal stress space. The conventional axisymmetric
compression test thus corresponds to b = 0, while triaxial extension
corresponds to b = 1. A total of 500 time steps of equal magnitude
were used to impose a total axial strain of 0.5. For each radial load-
ing test simulation, the state of stress corresponding to failure was
identified and the friction angle, /, defined by

sin / ¼ r1 � r3

r1 þ r3
ð47Þ

was recorded. The results, in terms of friction angle as function of b
and for different rolling friction coefficients, are shown in Fig. 8.
Also shown in this figure are traces of the Lade–Duncan [22], Mats-
uoka–Nakai [29] and Mohr–Coulomb criteria, matched for triaxial
compression and fitted to the former criterion. As seen, the agree-
ment with the Lade–Duncan criterion is rather good, especially for
higher values of lr. In particular, the results verify the different tri-
axial compression and extension friction angles predicted by this
criterion. Similar findings have previously been made by Thornton
[53] using the conventional DEM.

Regarding rolling resistance, we note that increasing lr

increases the macroscopic friction angle, for b = 0 from around
19� for lr to as much as 31.5� for lr = 0.15. In fact, a more careful
analysis shows that the relation between the macroscopic friction
angle and the microscopic rolling friction coefficient to a very good
approximation is linear (see Fig. 9).
Fig. 11. Granular column collapse: dependence of final radius and height on the
slenderness ratio.
6.2. Granular column collapse

The second example involves the collapse of an initially cylin-
drical column under the action of gravity. Due to its apparent sim-
plicity and a number of somewhat surprising scaling laws, this
problem has been the subject of several investigations since first
being introduced in a series of experiments by Lube et al. [26,25]
and Lajeunesse et al. [24]. Both discrete models of the kind covered
in this paper [21,20,58,45,46,23] and continuum models [28,13,23]
have been proposed and shown to reproduce many of the features
of the physical experiments. So far, however, there have been few
attempts to reproduce the experimentally observed behavior
quantitatively using these models.
For particle models, the main challenge in reproducing the
behavior of natural grains such as those used in the above men-
tioned experiments is that these inevitably deviate considerably
from perfect spheres. To assess the ability of the rolling resistance
model to capture the effects of the non-spherical geometries, a ser-
ies of simulations were conducted using the fully dynamic version
of the granular contact dynamics scheme. An example of the setup
is shown in Fig. 10. The column is generated by letting particles,



Fig. 12. Granular column collapse: final deposit for column with h0/r0 = 5.
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approximately 40,000, fall freely into a cylinder with a given base
radius, r0. After the particles have settled, the column is trimmed to
a specified height, h0. As in the previous example, we use dmin/
dmax = 0.5 and the initial density is controlled by adjusting the in-
ter-particle friction coefficient so that a porosity of 0.42 (corre-
sponding to that used in [26]) is achieved. The column then
collapses under the action of gravity, i.e. all boundaries except
the bottom one are released. The simulations are carried out for
a total time of �t ¼ t=

ffiffiffiffiffiffiffiffiffiffi
h0=g

p
¼ 4:0 using 100 time steps of equal

magnitude. The inter-particle friction coefficient is set to
l = tan30� = 0.577 while the rolling friction coefficient is set to
lr = 0.12 in all simulations. This value was chosen on the basis of
the results of the previous example in that it corresponds approx-
imately to a macroscopic friction angle 30�. In two dimensions, the
lr = 0.12 corresponds to a shape in between a hexagon (ns = 6,
lr = 0.13) and a heptagon (ns = 7, lr = 0.11).

Under these conditions, a series of simulations for columns with
different slenderness ratios, h0/r0, were conducted and the final ra-
dius and height were recorded. The results are shown in Fig. 11
along with the experimental data of Lube et al. [26]. As seen, the
match between experiment and simulation is rather good. In par-
ticular, the approximately bilinear dependence of the final radius
and height on the slenderness ratio is captured well.

In Fig. 12, the final deposit for a column with h0/r0 = 5 is shown.
Compared to the triangular form that would be expected in a static
version of the experiment, a more conical shape is observed, again
in good agreement with physical experiments.

This example demonstrates that the rolling resistance model
presented is capable of capturing the physical behavior of natural,
non-spherical, particles quite well. Although a calibration needs to
be carried out in order to determine the appropriate value of lr,
this seems to be a small price to pay compared to the alternative
of accounting for the actual particle geometries in the simulations.

7. Conclusions

The conclusions are as follows:

� Two different three-dimensional formulations of granular con-
tact dynamics as it applies to spherical particles have been
developed with the variational structure of the formulations
being particularly emphasized (Section 2). Both static and
dynamic versions of the formulations have been derived. Nota-
bly, the former appears as a special case of the latter and the
same algorithms are applicable to both versions of the scheme.
This avoids, among other things, the need for approximating
quasi-static problems in terms of their fully dynamic counter-
parts as in the conventional DEM.
� Both formulations can be cast in terms of second-order cone

programs. An analysis of the duality properties within the
framework of conic programming has been presented (Section
3). This allows for a straightforward interpretation both in
terms of static and kinematic quantities. While the two prob-
lems, static and kinematic, are equivalent, the kinematic prob-
lem appears to be favorable in an algorithmic context as the
number of variables is somewhat smaller.
� To account for the effects of non-spherical geometries in an

‘effective’ manner, a rolling resistance model has been proposed
(Section 4). This is incorporated into the variational formulation
in a straightforward manner and does not require any algorith-
mic modifications. While the model requires an additional
material parameter (in addition to the inter-particle friction
coefficient), the magnitude of this can be estimated on the basis
of a simple two-dimensional analogy involving arbitrary regular
polyhedra. Although there would certainly be cases in which
the proposed rolling resistance would fail to provide a reason-
able representation of reality, its utility in typical problems
has been demonstrated by means of numerical examples and
comparisons to physical experiments (Section 6).
� Finally, the crucial issue of imposing boundary conditions has

been discussed in some detail (Section 5). The scheme here used
follows that of inter-particle contact quite closely and can be
used to model, in principle, arbitrarily complex rigid bound-
aries. Flexible boundaries have not been considered, but appear
to be possible to model using a similar approach to enforce con-
tact between particles and flexible finite elements.
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